

2016年新疆阿克陶Mw 6.6地震InSAR 同震形变及震后形变特征

地震形变研究室

董彦芳 2018.9.26

报告内容

一. 阿克陶地震的地质背景

二. 阿克陶地震InSAR同震形变

三. 阿克陶地震震后形变

四.结论

一. 阿克陶地震的背景

- 2016年11月25日22时24分在新疆克孜勒 苏州阿克陶县(北纬39.27度,东经74.04 度)发生Mw 6.7地震,震源深度10千米。 震中距喀什169公里,距乌鲁木齐1238公 里。
- 本次地震发震断层位于木吉断裂,震源 机制结果显示为右旋走滑型破裂。根据 震源破裂过程研究结果,以单侧破裂为 主,从震中开始向东传播,余震活动也 显示了近东西向的展布特征。

图1研究区雷达数据覆盖和余震分布

用于同震形变提取的雷达数据包括: 1对升轨Sentinel-1A 1对降轨Sentinel-1B 1对升轨ALOS-2 PALSAR数据。

表1同震形变提取所用的雷达数据信息列表

SAR sensor	Master image date	Slave image date	Temporal baseline (days)	Perpendicular baseline (m)	Orbit direction	Spatial resolution
Sentinel-1A (IW VV)	Nov. 13, 2016	Dec. 7, 2016	24	96	Ascending T027	20 m
Sentinel-1B (IW VV)	Nov. 25, 2016	Dec. 19, 2016	24	80	Descending T107	20 m
ALOS-2 PALSAR-2 (FBD HH)	Jul. 20, 2016	Dec. 7, 2016	140	94	Ascending T162	10 m

二. 阿克陶地震InSAR同震形变 同震雷达干涉处理及结果

图2 阿克陶地震同震干涉图

InSAR LOS形变的三维分解

表 2 SAR影像的几何参数信息

 $\begin{bmatrix} d_u \\ d_f \end{bmatrix} = A^{-1} \cdot \begin{bmatrix} d_{LOS}^A \\ d_{LOS}^D \end{bmatrix}$

		Incidence angle θ (°)	Heading angle of flight direction ω (°)	φ=ω-3/2π
	Sentinel-1A ascending	37	346.7	76.7
	Sentinel-1B descending	41.7	193.5	-76.5
direction	PALSAR ascending	36.3	344	74
u u u u u u u u u u	$d_{LOS} = cos$	$d_{LOS} = cos\varphi \cdot d_{u} - cos\varphi \cdot d_{LOS} = cos\theta \cdot d_{LOS} = \begin{bmatrix} cos\theta \\ d_{LOS}^{D} \end{bmatrix} = \begin{bmatrix} cos\theta \\ cos\theta \end{bmatrix}$ $A = \begin{bmatrix} cos\theta \\ cos\theta \end{bmatrix}$	$sin\theta \cdot d_n - sing$ $d_u - \cos(\alpha - \varphi^A)$ $A^A - \cos(\alpha - \varphi^D)$ $A^A - \cos(\alpha - \varphi^D)$ $A^A - \cos(\alpha - \varphi^D)$	$\varphi \cdot \sin\theta \cdot d_{e}$ $\varphi) \cdot \sin\theta \cdot d_{f}$ $\left(\begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $

图4 雷达成像几何与三维形变分量的关系

InSAR LOS形变分解

图5阿克陶地震升轨与降轨归一化同震形变图

图6阿克陶地震同震形变分解图 (a) df; (b) du

二. 阿克陶地震InSAR同震形变

图7形变观测值、模拟值及残差

InSAR同震形变模拟 "采用SDM方法

- 假设
 Strike=105°
 dip angle: 78~80°
 Fualt length: 72 km
 Width: 40 km
 Slip angle: 135° ~225°
 LOS权重:
 0.5, 0.4, 0.1
 - 反演结果

Correlation: 0.91 RMS: 0.9-1.7 cm

图8 滑动分布反演结果

滑动分布在2~25 km之间,平均滑动角~184.67°,倾角为79°。 此次地震有两个破裂中心:东滑动动心的最大滑动量为1.15 m, 深度6.87 km,滑动角为184.63°;西滑动中心最大滑动量为 1.02 m,深度9 km,滑动角180.70°。 反演震级为Mw 6.6。

表3. 阿克陶地震震源机制解

Source	Lon	Lat	Depth	Strike	Dip	Rake	Mw
CENC	74.04°E	39.27°N	10	113	80	-168	Ms 6.7
USGS	73.98°E	39.27°N	17	107	76	174	Mw 6.6
Harvard	74.14°E	39.27°N	19.1	110	78	-177	Mw 6.6
GCMT							
This study	74.37°E	39.19°N	6.87	105	79	184	Mw 6.6

表4时序SAR影像信息列表

*表示超级主图像

利用SBAS方法,组成的166 对干涉,从中挑选干涉性好、 受大气影像较小的干涉对42对,包括26个时相的SAR影像。 利用GIAnT软件进行时序分 析,估计出大气误差和轨道误 差,并进行校正。最终获取时 序累积形变场。

No	Acquisition time	Temporal	Perpendicular
NU.	Acquisition time	baseline (d)	baseline (m)
1	20170205*	0	0
2	20170223	18	-51
3	20170319	42	20
4	20170331	54	-38
5	20170412	66	-82
6	20170424	78	-80
7	20170506	90	-74
8	20170518	102	-34
9	20170623	138	-115
10	20170705	150	3
11	20170729	174	-48
12	20170903	210	-56
13	20170915	222	-48
14	20171009	246	-62
15	20171102	270	-97
16	20171114	282	-44
17	20171126	294	-38
18	20171220	318	-119
19	20180101	330	-76
20	20180113	342	-69
21	20180206	366	-55
22	20180218	378	-111
23	20180302	390	-107
24	20180314	402	-31
25	20180513	462	-98
26	20180525	474	-19

Distance along the section/(m)

- 1. InSAR同震形变显示断裂两侧的形变在方向上存在差异, 地震断层为右旋走滑性质;同震滑动分布反演显示有两 个破裂中心,此次地震为两次地震事件组成。
- •2. 震后1.5年的时序形变显示,随着时间的推移,累积形变量增大,跨断层剖面显示断裂两侧形变与同震形变有相同的特征。余震主要分布在同震形变的两个形变区内。

